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Abstract
Dialog systems are versatile, providing services
from weather, alarms, movie recommendations,
traffic, advice and more. Their functionality de-
pends on the underlying micro-services, which are
interchangeable applications running in real time.
Since most modern dialog systems are hosted on
network clusters, these micro-services must be able
to scale under a distributed environment with min-
imal impact on performance and data integrity.
Furthermore, micro-services must not compete for
resources or impact performance of other micro-
services. This paper proposes a new framework
which adopts existing distributed system managers
to scale applications, like dialog systems, while
maintaining programmability. To test the effective-
ness of this new framework, PUMA, we developed
a movie recommendation dialog service that runs
exclusively on the proposed framework. This im-
plementation is then put through a series of bench-
marks that simulates high service usage in a va-
riety of capacities. We expect PUMA to outper-
form existing designs and be ideal for applications
with many independent micro-services such as dia-
log systems.

1 Introduction
dialog systems are extremely useful by the skills they present
to a user. An interaction consists of several utterances that
may illicit the help of several micro-services. These micro-
services must scale and perform with minimal latency in or-
der for the core service to return a timely response. These
services often operate in the cloud where the largest obstacles
are availability, performance unpredictability, and auto scal-
ing [Armbrust et al., 2010]. While these obstacles are central
to the quality of the service, they are often neglected in favor
implementation simplicity. Novel dialog systems, like Tick-
Tock, [Yu et al., 2015], are naively implemented to run on
a single Linux instance, despite intentions to integrate with
high throughput systems. We continue to see this trend as ap-
plications like dialog systems increase complexity both com-
putationally and as a service [Gustafson et al., 2000], [Levin
et al., 1998], [Henderson et al., 2013]. Moreover, these sys-

tems are not built with scalability, availability, concurrency,
and parallelized computation in mind at the application level.
This needs to be addressed.

PUMA is inspired from Amazon Lambda and Elastic Load
Balancing services. Complex dialog systems of today like
Alexa are built on serverless platforms with instant scaling
response on triggers. Code runs parallel for requests and
triggers individually, scaling only for the size of the work-
load; this is extremely cost efficient [Villamizar et al., 2016].
While practical for simple and isolation driven architectures,
this platform suffers from several drawbacks. Namely, inher-
ent portability complexity of existing code for stateless server
design, a lack of visibility in scaling and load balancing ser-
vices, and a commitment to using AWS. Organizations are in
need of an open source application scalar and load balancer
that is IaaS/PaaS independent. Moreover, scaling monolithic
servers running multiple services on demand is not feasible
on traditional providers like RackSpace and AWS [Villamizar
et al., 2015]. Scaling traditional monolithic applications con-
tinues to be a challenge because they typically offer a variety
of services, some more popular than others. If popular or high
utilization services need to be scaled because of high demand,
the entire set of services must also be scaled [Villamizar et al.,
2015]. PUMA attempts to alleviate monolithic service scal-
ing and load balancing difficulties by enabling service defini-
tion. PUMA proxies requests for application defined micro-
services that are scaled and balanced automatically. PUMA
can run on both single instance servers and in a distributed
manner using commodity nodes.

PUMA automatically enables distributed computing re-
sources to the application, proxies micro-services, ensures
availability, and provides computational resource responsibil-
ity. PUMA routes core functionality of standalone applica-
tions across distributed computing nodes. Nodes can execute
requests and application defined services in parallel and co-
ordinate high intensity workloads by automatically spawning
more nodes. Application defined services are not limited to
services accessed only by the end user, but all areas of com-
putation where distributed computing can be leveraged. Influ-
enced by Google’s MapReduce [Dean and Ghemawat, 2008],
PUMA aims to enable data-segmented parallelized computa-
tion on dynamically spawnable CPU nodes. This framework
prevents blocking of new services by ensuring enough com-
putational resources exist for new requests. Thus, the CPU



is available for requests, while leaving heavy lifting such as
distributed matrix factorization [Gemulla et al., 2011], neural
network training [Dean et al., 2012], and classification tasks
to scalable computing workers.

These workers are delegated by the load supervisor.
PUMA leverages Envoy, an open source L7 service proxy
and communication bus [Klein, 2016]. By using Envoy as
the load supervisor, PUMA can efficiently manage a mesh
of nodes and service endpoints. Envoy runs natively with
any application language, providing a rich service architec-
ture in a latency-optimized manner [Klein, 2016]; ideal for
real time applications such as dialog systems. Envoy also pro-
vides gRPC support, ideal for encapsulating code for remote
execution [Klein, 2016]. PUMA is designed for a centralized
application designed service architecture, that is scalable and
accessible with API-like connectors to key features and ser-
vices like database operations and background service oper-
ations. With Envoy’s abstracted upstream mesh and simple
service architecture, PUMA does the heavy lifting by con-
figuring Envoy to the applications specifications. Integration
simplicity for existing architectures is a central focus of this
work, and to evaluate this metric, PUMA was tested on an ex-
isting monolithic dialog system. This system utilizes several
married services that when configured with PUMA, could be
decentralized and optimized to the dynamic workload, run-
ning and scaling independently. This system was then tested
on a series of benchmarks that measured latency, availability,
adaptation to unpredictable workloads, and scalability.

Portability is a central focus of this work. Most applica-
tions are first developed as a standalone application and when
scaled to distributed computing environments, like Amazon
Lambda, there is a significant modifications required. Addi-
tionally, designing a new standalone service with future dis-
tributed computing design in mind, hurts deployment time
and increase expense of development. As distributed com-
puting advances or service agreements change, legacy archi-
tectures embed in applications must be supported. PUMA
abstracts the distributed computing software from the appli-
cation and fundamental design choices translates directly into
easy maintainability throughout the product life cycle. Our
framework achieves high portability and maintainability on
our sample monolithic dialog system while increasing perfor-
mance by scaling and balancing various application defined
services.

Some key questions in evaluating this framework are: what
are implementation costs, how difficult is programmability,
and how much of an improvement over a traditional non-
distributed micro service implementations. Precisely, how
many lines of code is required to port an existing monolithic
application and what is the independent service speedup.
In deciding what metrics to use for programmability, we
relied on operating system techniques such as measuring the
number of lines of modified code. Due to ease of migration
and implementation, this framework can be adopted in var-
ious domains for any application. To measure independent
service speedup, we evaluate common data computations on
PUMA that can simulate potential speedup for more complex
operations like matrix factorization.

Figure 1: PUMA System Framework PUMA configures
standalone applications to interface with application defined
services in Envoy. PUMA configured applications serve re-
quests by proxy to distributed computing nodes. Envoy load
balances requests with commodity hardware to provide ser-
vice availability. A lightweight PUMA python library is
available to provide API-like communication with applica-
tion defined services, thus providing parallel computing on a
distributed mesh.

The contributions of this paper are,

• A framework for automatically configuring standalone
monolithic applications to a set of application defined
micro-services capable of load balancing and scaling ac-
cording to the workload

• A set of benchmarks that demonstrate the effectiveness
of such framework on computationally expensive tasks

• A ported monolithic style application with less than 15
lines of altered code.

We published our source code1 and maintain a running in-
stance2 of the ported chatbox application. Our team is hop-
ing to publish a python library for application defined PUMA
configurations to automatically port standard python applica-
tions to PUMA enabled applications.

2 System Overview
PUMA library is at the root of application portability. With
the PUMA library imported to standalone applications, major
functionality can be migrated to the service mesh. This re-
quires well defined application service boundaries, but these
can be specified by the application, further ensuring maxi-
mum flexibility during portability.

The PUMA interface extends Envoy by exposing proxy
functionality and providing abstractions to Envoy features
like load balancing and automatic computational scaling.
With application service mappings defined by the PUMA li-
brary, independent services can be routed to computational
nodes running on Envoy’s native code base at the service
endpoint. Code intended for gRPC streaming endpoints are

1https://github.com/kevinjesse/puma
2http://puma251.ddns.net:8080



encapsulated and forwarded while complementary function-
ality like routing and load balancing for gRPC still occurs
on the Envoy substrate. The database sub-interface translates
database requests from locally defined database connections
to a balanced Envoy service routing directly to DynamoDB.
This is critical for frequent or large database queries as the
database service can scale according to usage in addition to
software logic; thus not becoming a common bottleneck for
scaled software logic. The PUMA interface registers defined
configurations of services from the PUMA lib and propagates
those configurations to Envoy in a seamless fashion. PUMA
provides application developers with the tools necessary to
scale and balance the application, without having to have spe-
cific domain knowledge of L7 proxies, load balancing, and
scaling technologies.

Envoy is a self contained process that can run alongside the
application server. The Envoy mesh is completely transparent
to the application in which the application sends traditional
GET and POST requests to and from the localhost, com-
pletely unaware of the underlying network topology [Klein,
2016]. This is important for several reasons: applications
do not need to be configured with distributed computing in
mind for portability. Moreover, with REST API-like commu-
nication, applications can be written in any language; service
orient architectures tend to use multiple application frame-
works and languages. While Envoy is typically a service to
service communication system, PUMA uses Envoy as a front
edge proxy. This brings the same benefits of observability,
management, identical service discovery, load balancing, and
scaling at first interaction with the workload. This interaction
with the workload at then edge provides Envoy with a distinct
scaling advantage as there is little delay of recognizing when
more computational resources are necessary and no up time to
expand the mesh because the future resources are configured
at start up. Lastly, the transparent Envoy mesh means scaling
and library upgrades can be deployed and upgraded across the
infrastructure efficiently and quickly. This distributed mesh is
composed of a variety of commodity hardware.

Envoy relies on commodity hardware for the execution of
its services. The envoy master thread controls coordination
while worker threads accept connections and is bounded to
a set of resources. These threads are ran natively so that the
architectural components can get out of the way and are opti-
mized for highest hardware performance.

Services expansion provides a potential bottleneck at
database operations. Even services that do not directly access
the database, commodity nodes will eventually need infor-
mation that reside elsewhere. This tail latency is dangerous,
especially when sharing a structure such as a database. To
demonstrate the need for conscious structural decisions, we
recommend using a database like DynamoDB which is op-
timized for Envoy and has all of the advantages previously
discussed.

The detail of PUMA’s configuration methods will demon-
strate the easy of migrating an existing application to this sys-
tem architecture.

3 Design
The design for PUMA was inspired by the Lambda service
architecture used in the Alexa Prize. Novel dialog and multi-
modal systems [Yu et al., 2015][Thomason et al., 2016] can-
not easily be built on serverless platforms and future concerns
such as load balancing, is often neglected in favor of feature
development and integration. PUMA inherits many advan-
tages of serverless applications with Envoy, while maintain-
ing flexibility and exclusiveness of monolithic cloud environ-
ments (IaaS/PaaS).

Figure 2: Serverless Model Applications must be written
for existing serverless platforms like AWS Lambda. Appli-
cations in serverless platforms can easily be scaled and load
balanced while cost of operation is less than traditional server
hosts like EC2.

3.1 Serverless Design
Serverless computing denotes a special software architecture
where application logic is execution in an environment with-
out visible processes, servers, virtual machines, or operating
systems [Stigler, 2018]. While these operating system and
architectural principles still exist in underlying hardware and
virtualization, they are abstracted away so the developer can
solely focus on writing deploy-able code. Service providers
are responsible for efficiently serving all requests from its
clients and do not have to run a permanent workload for a
specific client. The application developer does not need to
worry about scalablity and load balancing and the service
provider can utilize their infrastructure more efficiently; a true
win win.

Serverless architecture has several advantages over tradi-
tional PaaS providers. Many PaaS providers do not guarantee
automatic scaling, and the application developer has to man-
ually scale the application, potentially, still without necessar-
ily meeting dynamic needs. PUMA solves this scaling issue
within PaaS systems by leveraging Envoy. Moreover, PUMA
maintains the performance and abstractions serverless archi-
tectures provide without any of the drawbacks.

Serverless architectures have some fundamental draw-
backs. Long running applications or services with tail la-



tency are often more expensive than a dedicated server or vir-
tual machine [Baldini et al., 2017]. Serverless code is writ-
ten for the platform it is running on like AWS Lambda or
Azure Functions which introduces a learning curve and ven-
dor lock-in. Additionally, when the application is completely
dependent on a third-party provider, there is less control of
the application and changing the provider leads to significant
in application changes. As serverless costs change, it might
be more affordable to revert the code base for other providers,
a difficult and expensive procedure. In contrast, PUMA runs
on any platform PaaS and is completely portable because it
runs in a Docker container. When running applications in
a serverless environment, service providers might run soft-
ware from several different customers on the same physical
server to utilize their resources more efficiently [Baldini et
al., 2017]. Not only will your application not be guaranteed
to maximally scale according to it’s workload, other customer
application and provider infrastructure bugs can lead to secu-
rity vulnerabilities. PUMA can run in any PaaS or monolithic
server and scale without restrictions as long as the underly-
ing hardware is available. In practice, serverless platforms
suffer from a cold start problem in which there is a delay to
initialize internal resources when the application is offline or
there hasn’t been requests to the function for a while [Baldini
et al., 2017]. For dialog systems and real time systems, de-
lays within application functions is unacceptable [Patil et al.,
2017]. In contrast, PUMA always runs a single master thread
and will spawn worker threads as needed so response time
is always instant. Lastly, FaaS services like AWS Lambda
do not provide out-of-the-box tools to test functions locally;
this incurs a cost for testing the application on AWS Lambda
[Baldini et al., 2017]. Due to PUMAs design to run in a
Docker container, testing and extensive logging can be done
anywhere and does not incur additional costs.

PUMA avoids the aforementioned disadvantageous of
serverless platforms while providing most of the benefits:
scaling and load balancing capabilities, micro-service design,
abstractions to allow developers to focus on code and addi-
tionally requires little modification to existing monolithic ap-
plication. This is accomplished by exposing key envoy ser-
vice endpoints.

3.2 Envoy
Envoy is an open-source L7 proxy and communication bus
designed for modern service architectures with the principle
of accessible but transparent network resources. PUMA de-
ploys Envoy as a service to service with front proxy to allow
communication with the internet from specialized ports. We
use these ports to specifically communicate with PUMA from
within the web application.

Envoy runs with a single master thread that provides co-
ordination with a number of worker threads. These worker
threads listen, filter, and forward connections. Connections
through the Envoy proxy are bound to a single worker thread,
allowing connections to be embarrassingly parallel with lit-
tle effort necessary for coordination between worker threads.
Envoy is 100% non-blocking and the number of worker
threads is typically configured to the number of hardware
threads available on the machine. When a connection is re-

Figure 3: PUMA Configured Envoy Mesh PUMA defined
services at the PUMA library are configured in Envoy front
proxy mesh network. These services use envoy listeners de-
fined in the application using the PUMA library. Workers
operate through a PUMA flask application that maintains ap-
plication defined service logic.

ceived on a listener, or worker thread, it can perform a variety
of different proxy tasks: rate limiting, TLS client authentica-
tion, HTTP connection management, filtering, and forward-
ing.

Each Envoy deployment has a HTTP connection man-
ager responsible for HTTP multiplexing. PUMA interfaces
with Envoy thought the HTTP connection manager on port
8080 for statically established routes in the configuration. As
PUMA becomes more robust, we hope to dynamically estab-
lish routes on running deployments using Envoys RDS API
(Route Discovery Service). The RDS API is an optional API
that Envoy calls dynamically to fetch route configurations.
PUMA also leverages Envoys HTTP routing to efficiently
route incoming HTTP requests to upstream clusters, acquires
a connection pool to host the upstream cluster, and forwards
the request. Benchmarking PUMA and envoy saw that the
forward proxy acquired connection pools up to 250 cluster
nodes. Furthermore, as PUMA becomes more feature rich,
we hope to support priority based routing; while sufficient for
our real time system, other applications with more significant
demands might benefit from priority routing. Expose simple
load balancing options is in PUMA’s future.

Currently PUMA relies on Envoy’s simple load balancing
policy of round robin. This means each service defined in
PUMA lib gets an equal distribution of computational re-
sources. With multi-modal systems of various importance
and impact to real time, round robin might be less than ideal.
With PUMA we hope to integrate load balancer options of:
weighted least request, ring hash, Maglev, random, and orig-
inal destination. Circuit breaking is another critical compo-
nent of distributed systems that PUMA leverages with Envoy;
although we do not plan to expose any configurable options.
In contrast, global rate limiting configurations are available



{
” l o a d b a l a n c e r ” : ” r o u n d r o b i n ” ,
” l o g g i n g ” : {

” f i l t e r ” : ” { . . .} ” ,
” c o n f i g ” : ” { . . .} ” ,
”name” : ” . . . ”
} ,
” r a t e l i m i t ” : {

” c l u s t e r n a m e ” : ” . . . ” ,
} ,
” dynamodb ” : {

” c o n f i g ” : ” { . . .} ” ,
} ,
” p u m a s e r v i c e s ” : {

” s e r v i c e 3 ” : ” / f a c e ” ,
” s e r v i c e 2 ” : ” / h a p t i c ” ,
” s e r v i c e 1 ” : ” / p o l i c y ” ,
” s e r v i c e 5 ” : ” / db ” ,
” s e r v i c e 4 ” : ” / s e n t i m e n t ”
} ,
” h t t p c o n n e c t i o n m a n a g e r ” : {

” h t t p f i l t e r s ” : [ ] ,
” d r a i n t i m e o u t ” : ” { . . .} ” ,
” r d s ” : ” { . . .} ” ,
” t r a c i n g ” : ” { . . .} ” ,
” i d l e t i m e o u t ” : ” { . . .} ” ,
” r o u t e c o n f i g ” : ” { . . .} ” ,

}
}

Figure 4: Example PUMA Core Configuration JSON
This configuration is passed to puma config to define fun-
damental Envoy principles. The configuration is parsed and
PUMA configures Envoy according to the definitions. Note
puma services is the list of micro-services to be established
with their respective url access points on the localhost.

in PUMA because various applications will have vastly dif-
ferent use cases where, for example, a large number of hosts
are forwarding to a small number of hosts with a low average
request latency. This is a common issue with increasing low
latency connections to a single database server. This use-case
exemplifies why horizontally scalable distributed databases
like DynamoDB should be configured with the PUMA li-
brary, thus enabling seamless scaling and access of a single
table over hundreds on Envoy mesh instances. Lastly, PUMA
will expose basic asynchronous logging functionality and for-
mats.

3.3 PUMA and Portability
The PUMA package is distributed in two parts: PUMA li-
brary for application configuration and service definition, and
PUMA core which contains the modifications to Envoy to ac-
cept such configurations.

PUMA Library
The PUMA library is a python library on PyPi3 available as
early as April 2018. It provides a set of functions used to
configure PUMA Core in an application. These functions in-
clude: puma config, puma service, and puma start.

puma config
puma config is a configuration method used to set PUMA
Core configurations for logging, load balancing, databases,
service definitions, rate limiting, and more. The only input
parameter is a JSON or python dictionary with PUMA con-
figuration keys and values. For example, configuring PUMA

3https://pypi.python.org/pypi

core can look like the JSON in Figure 4.

puma service
puma service is an code encapsulation method that takes
python source code encoded as a string and passed to the cor-
responding service. Similar to the puma config, the en-
coded source code is assigned to a service key and loaded
into the runtime of PUMA’s envoy flask management app on
port 8080. For PUMA data bench-marking, puma service
is was used to define map reduce in the service space.

puma start
puma start is a wrapper to start the PUMA flask app and
launch the envoy mesh. puma start should be declared in
the final steps of starting the application.

PUMA Core
The PUMA Core is an PUMA configured Envoy4 front proxy.
The PUMA Core contains modified configuration files and a
master Flask5 application. The Flask application serves to en-
able configurations, routes, database connections and more.
All Envoy deployments rely on a master Flask application
and PUMA is no different. However, the PUMA Core mas-
ter application maintains configurations and PUMA service
definitions. With the defined services and the encapsulated
source code from PUMA Lib, PUMA Core can deploy such
source code to the corresponding service and service URLs.
Finally PUMA deploys the PUMA configured Envoy front
proxy in a docker container, starts the upstream mesh, and
enables worker listeners on all commodity hardware. Ideally
service definitions would be established in the Envoy configu-
rations as declared dynamically, however because of the short
developmental time frame, we have manually configured the
maximum number of service definitions to be five.

Porting With PUMA
Porting with PUMA requires minor modifications to existing
applications. PUMA Core configuration JSONs are variable
in length, but at a minimum require at least one service defini-
tion; this amounts to a single line of code. Another modifica-
tion to a traditional application is including the puma start
method. Encoding application python code into a list re-
quires approximately five lines of modified code. Most ap-
plications no longer need the server infrastructure code be-
cause it exists within PUMA and so applications typically
become more lightweight; this is consistent with serverless
migrations. Lastly, if URLs are defined differently as micro-
services than in the traditional socket implementation, then
they need to be replaced with the correct PUMA service end-
points. Section 4.1 Porting An Existing Application, will
demonstrate the simplicity of porting an existing application
and how our application lost weight.

3.4 Database Optimization
Traditional database connections to legacy databases are still
supported in PUMA, however conducive for optimal per-
formance. Legacy database architectures are supported but
may require Docker modifications to ensure that the proper

4envoyproxy.io/
5flask.pocoo.org/



libraries are available at deployment. The PUMA migra-
tion of the dialog movie recommendation application, main-
tained the existing PostgreSQL database, but required psy-
copg2 package at deployment in order to connect to the Post-
greSQL database.

Low request latency to database structures provides a chal-
lenge in distributed systems. Systems where micro-services
are embarrassingly parallel and contend for the same struc-
tures provides potential hazards and impedes the ability for
timely responses. While aggregating database structures by
service helps, it does not scale with the PUMA deployment.
Ideal databases for PUMA are DynamoDB6 [DeCandia et al.,
2007] or MongoDB7 because of the ability to horizontally
scale with ease of configuration in Envoy by PUMA. Other
database configurations should be considered if running En-
voy on alternative elastic computing platforms such as Mi-
crosoft Azure8 and Google Compute Engine9. Databases like
Google’s BigTable [Chang et al., 2008] or Spanner [Corbett
et al., 2013], are suitable for PUMA because they are capable
to handle an influx of requests as Envoy scales. Configuring
any of these database solutions does impact portability, but
with DynamoDB, it is to a minimum.

4 Implementation
PUMA was deployed by porting an existing monolithic ap-
plication onto the Envoy Mesh. Additionally, to determine if
the Envoy mesh would provide speedup in computationally
expensive tasks, we benchmark PUMA with a simple map-
reduce implementation.

4.1 Porting An Existing Application
Porting the existing application like our monolithic socket
based python server application was incredibly simple. With
only nine lines of additional code and 13 lines of retained
logic, our application shed 49 lines of code. Appendix A
demonstrates how using PUMA and moving to a pseudo-
serverless architecture significantly reduces the responsibility
of the developer by removing system code. With PUMA the
developer can focus on the application code knowing their
application can scale and load balance accordingly.

4.2 MapReduce
A branch of our PUMA system is created for the MapRe-
duce benchmark. The mechanism and system framework are
no different from the main PUMA implementation, only that
some code is modified to aid the collection of experimental
data.

The PUMA MapReduce system consists of the client API
library and the server Envoy service. The client API library
is responsible for providing the transparent function in which
the application will call. The function takes in the sequential
data and the mapping function as arguments. The library will
then chunk the data into the size of the square root of the
number of data given, so that the size of each chunk is similar

6aws.amazon.com/dynamodb
7mongodb.com/
8azure.microsoft.com
9cloud.google.com/compute/

to the number of chunks. We recognize this to be a point
of optimization. The library then package the chunked data
and mapping function into discrete JSON string, and is sent
to the server Envoy endpoint via a RESTful API. The library
then waits for all the response to be returned, re-combines the
chunks and returns the result to the application.

The server endpoint of PUMA utilizes Envoy’s port ser-
vices and load balancing. RESTful requests from PUMA
client is received using the python Flask library, which maps
the requested URL endpoint to their respective service. En-
voy routes each incoming requests in a round robin fashion to
a fixed number of service instances, which processes the re-
quest and return the results as a JSON RESTful API response
to the original sender.

For our MapReduce implementation, the mapping func-
tion is covered into JSON by obtaining the string repre-
sentation of the source using the built-in inspect module’s
getsouceline() 10. The data is sent as a JSON array.
On the server, the mapping function is converted to local ob-
ject using the exec() function, and is then called with the
data parameters using eval() 11. In future work, we in-
tended to streamline this process and migrate away from us-
ing eval() due to the inherent security vulnerability, but
for this paper and the simplicity of our implementation, we
included the client and the server connection into our TCB.

Figure 5: PUMA API service This figure describes the sys-
tem diagram of PUMA MapReduce API. Applications call
a function provided by PUMA’s API library, for instance,
puma map(), where the API library will chunk the data ar-
ray into multiple smaller arrays. The data and mapping func-
tion is sent as JSON via RESTful API to the target PUMA-
Envoy service, where Envoy load balances the incoming re-
quests into respective compute instances. Once the instance
processed the data chunk, it is sent back to the client’s API
library via JSON. The API library then rejoins the chunked
data arrays and return to the application.

5 Evaluation
A major goal of the PUMA system is to provide standalone
applications transparent access to a distributed system frame-
work. In order to measure the effectiveness of the PUMA sys-

10https://docs.python.org/3.5/library/inspect.html
11https://docs.python.org/3.5/library/functions.html



tem, we gauged the system based on three categories: Ease of
adopting the PUMA library, throughput and latency.

5.1 Ease of Adoption
We qualitatively recorded the required effort of adopting
a task or applications to using distributed systems using
PUMA. Our point of consideration includes the transparency
of using the PUMA system, the lines of code needed to be
changed, and the number of factors needed to be considered
by the application developer when porting their apps onto a
distributed system.

5.2 Throughput and latency
We benchmarked the PUMA system on a MapReduce prob-
lem. MapReduce is a common problem both for standalone
applications, such as the use of for loop on a list of data,
and for distributed system applications, for processing a large
dataset on server clusters [Dean and Ghemawat, 2008]. A
MapReduce problem will also gauge the throughput and la-
tency of our system via the size of the data being mapped and
the complexity of the mapping function, respectively.

Benchmarking System
We created our distributed system on an AWS EC2
m5.24xlarge instances with 96 virtual CPUs and 384GB of
memory [Amazon Web Services, 2018]. The distributed sys-
tem is created by Envoy via docker-compose. We scaled our
distributed system to having 250 instances for our bench-
marking service using Envoy, where each instance is simu-
lated using child processes behind the scene.

We ran two versions of the trial with different clients. The
first trial was run with a 2016 15” MacBook Pro with an In-
tel Core i7 Skylake at 2.6GHz and 16GB of memory [Apple,
2017]. This is to simulate real-world usage of PUMA, where
the developer of the standalone application is most likely to
be running their application on their computer. The second
trial was run directly on the EC2 instance. By running the
client directly on the machine, it eliminates latency of go-
ing through the Wide Area Network from our results. The
performance impact to Envoy and the distributed system is
negligible due to the amount of resource on the EC2 instance.

Experimental Setup
We varied the data size of the mapping problem for bench-
marking the throughput of the system. We created a MapRe-
duce problem of 100 to 1,000,000 item with a step size of a
factor of 10. Each item consists of the integer 100, each to be
mapped by the factorial function. Each step size is run five
times to reduce statistical variation.

We varied the integer to be mapped to benchmark the la-
tency of the system. We vary the input integer for the factorial
function, using 100, 500, 100 and 1500. Each trail is run with
the data size of 100,000. Each input integer trials is run five
times to reduce statistical variation.

The total latency of the system is measured by recording
the time taken starting from the creation of the data array by
the client until the client has collected all results from PUMA
and returned the sum of all the mapped factorials.

1 import a s y n c i o
2 import puma
3
4 async def a p p f u n c t i o n (
5 d a t a : l i s t
6 ) −> l i s t :
7
8 def f a c l ( n ) :
9 t o t a l = n

10 f o r i in range ( n − 1 , 0 , −1):
11 t o t a l ∗= i
12 re turn t o t a l
13
14 r e s u l t = a w a i t puma . puma map (
15 f a c l , d a t a
16 )
17 re turn r e s u l t

Figure 6: Paralleling Data Operations with PUMA PUMA
is more than a service definition and configuration tool.
PUMA has can support computational tasks that are natu-
rally advantageous to execute on a distributed system. With
PUMA, a simple map reduce function can leverage the entire
Envoy mesh. Data operations are balanced and scaled con-
current with other services.

6 Results
We collected data according to our evaluation metrics to
gauge the performance and effectiveness of PUMA.

6.1 Ease of Adoption
We measured PUMA’s ease of adoption according to its trans-
parency, lines of code changes needed and abstractions of fac-
tors needed for consideration when porting application to dis-
tributed systems.

Transparency
PUMA enables transparent usage of the distributed system
by abstracting communications with the servers, chunking of
the data and functions and gathering of server responses away
from the API user, as seen in Figure 5 and Appendix A . Ap-
plication services only have to wait for the PUMA library to
return the results, as the data must go through the network
stack. Figure 6 shows that the PUMA system uses asyncio, a
modern built-in Python library that allows for asynchronous
tasks to be written like synchronous code12. The await key-
word ensures code will only continue executing when all
tasks within puma map() is completed. The API is also
designed to be as similar to the non-PUMA counterpart as
possible. Application services may simply substitute map()
from the Python built-in library with puma.puma map(),
and provide the correct configuration to PUMA, such as the
address of the distributed system, and PUMA will transpar-
ently run the map function on the distributed system.

Lines of Code
Appendix A demonstrates less than 9 additional lines of code
needed to be modified to migrate application logic to a micro-
service architecture. Figure 6 shows that custom computa-
tional operations such as map-reduce require little modified
lines of code to changed to a distributed system task. A
standard map(function, iterable, ...) function

12https://docs.python.org/3.5/library/asyncio.html



in python requires a function type and an iterable type. Our
puma map(function, data) implementation of map
has a very similar function signature. This means the API
users only have to change the function signature in order to
use PUMA and the distributed Envoy mesh.

Factors for Consideration
Migrating applications to a distributed environment, or con-
verting existing applications to a software as a service (SaaS)
requires consideration of multiple factors in the application
architecture. For instance, while most applications to be
monolithic, SaaS such as our dialog systems needs to be cre-
ated as a microservice. Traditional applications assume data
to come from a structure that has a complete view of the data,
while SaaS runs on distributed systems where databases are
stored fragmented across multiple clusters. In order to take
advantage of a distributed system, SaaS developers must re-
think their application architecture and distribute their appli-
cation as components piece by piece [Golding, 2018]. SaaS
developers must also understand the restraints of the respec-
tive distributed system and choose the application compo-
nents carefully to avoid bottleneck.

Our PUMA system abstracts away most of these consider-
ations behind the API, allowing the application developer to
convert components of their applications with ease. For in-
stance, application developer converting a map function can
simply call the puma map() instead. The developer only
needs to recognize components of their application that can
be distributed, and the library manages the distribution and
integration with the distributed system service. Load balanc-
ing and data consistency are done by PUMA as well, where
PUMA manages the load balancing via Envoy and data con-
sistency by combining the returned data before passing the
result to the user.

6.2 Throughput and Latency
We measured the performance of PUMA quantitatively using
MapReduce with varying data size and input integer for the
factorial function.

Varying Data Size
From our result, PUMA has demonstrated to speedup com-
putation when a certain data size is reached. As seen from
Figure 7a, the graph for total latency when using PUMA in-
tersects the graph for not using PUMA at between 10,000 and
100,000 when WAN overhead is present and at between 100
and 1,000 when WAN overhead is not present. This means
that at their respective data size threshold, it is more effi-
cient to run the MapReduce problem using PUMA on the
distributed system than on the local machine. This is rea-
sonable since using distributed systems allow the MapReduce
task to be run in parallel across a large number of computing
instances.

The differences in threshold where PUMA with local client
performs better than PUMA with client over WAN illustrates
the bottleneck of the system being the HTTP requests, which
will be demonstrated in Figure 8. Since data is chucked to
sqrt(datasize) number of arrays each with similar sizes, the
number of HTTP requests sent to the envoy services grows
exponentially.

Both blue lines for MapReduce without PUMA is strictly
exponential, meaning the MapReduce algorithm have not in-
troduced noises to the result. The different x-intercept for
both lines illustrates the latency due to differences in comput-
ing power between MapReduce running on the EC2 instance
and running on a laptop.

Varying Factorial Integer
With data size kept consistent, PUMA’s the speedup threshold
is more prominent as seen in Figure 7b. PUMA systems, i.e.
the orange lines, with and without WAN overhead are seen
to perform better than without PUMA at between 100 and
500 factorial. This is reasonable since applications without
PUMA has to run each computation after another, whereas
PUMA can run the mapping in parallel. The overhead of
HTTP requests is also constant since the number of HTTP
requests made is constant.

The orange lines are seen to converge at 1000 factorial.
This means that at high enough mapping complexity, The
overhead of going through the wide area network becomes
negligible due to the latency of the actual data processing.

Both blue lines for MapReduce without PUMA are ver-
tically transpositional of another, illustrating the MapReduce
algorithm yields predictable increase in total latency when the
mapping complexity is increased. It also illustrates that dif-
ferences in client computing power have a consistent effect at
any mapping complexity.

WAN Effects
The results from varying MapReduce’s data size and factorial
integer has shown an overhead with HTTP request. We plot
the differences in total latency between trials with and without
PUMA for both experimental parameters in Figure 8. These
graphs demonstrate the change in network overhead with the
change in data size and factorial integer.

As seen in Figure 8a, the difference in total latency in-
creases exponentially as data size increases. Since the only
difference between the two PUMA systems is the usage of
wide area network, the difference in latency observed is at-
tributed to the network latency and variability during the tri-
als. This will also explain the high fluctuation of the data.
The difference in latency is increasing exponentially as the
data size increases exponentially. This poses a potential prob-
lem with scalability as the data size grows even larger. How-
ever, since the issues lie with the number of network requests,
optimizations on reducing network requests or intelligently
balances the sending of resources should mitigate the issues.
Having dedicated connections between client and PUMA,
such as using the client within a company network, would
also reduce the overhead.

Figure 8b further illustrates the effect of network overhead,
and that complexity of the mapped function does not increase
the latency of the MapReduce task. The difference in total
latency decreases slightly as the factorial integer increases.
This means the difference in total latency is mostly indepen-
dent of the complexity of the mapped function. The slight
decrease can be attributed to the fact that at large mapped
function complexity, the time difference becomes less signif-
icant against the total time needed to complete the algorithm.

In addition to calculating the differences between using



(a) with Varying Data Size (b) with Varying Factorial Integer

Figure 7: Total Latency of Performing MapReduce with Iterative Factorial Function Both graphs show the average
total latency in logarithmic scale for the trials with varying data sizes in Figure 7a and with varying factorial input integer in
Figure 7b. The two blue lines represent the trials where the MapReduce is run solely on the client machine. The two orange
lines represent the trials the algorithm is run using PUMA – where the mapping of individual data is done using the distributed
system. The lines with triangle represent the trials where the client machine is part of the EC2 instance. Thus there is now
WAN overhead between the client-server communication. Exponential trend-lines are given for the orange lines. The lines with
circles represent the trials where the client machine is the MacBook Pro. Thus each request to PUMA must be sent via the
WAN to reach the distributed system.

PUMA with different clients, we calculated the difference be-
tween running MapReduce on the EC2 instance and a laptop.
The green lines represent the difference in total latency due to
the difference in computing power. Varying data size yields
a standard exponential graph, since the number of data needs
to be processed increases exponentially. Varying the factorial
integer yields a linear graph, since the number of data needed
to be processed is constant, but the complexity of each map-
ping increases.

7 Related Work
Our project involves multiple technologies within the area
of distributed systems architecture. PUMA requires a dis-
tributed system framework to manage system resources. It
also requires a data distribution mechanism to break apart
computations on large datasets. Since PUMA’s goal is to dis-
tribute standalone applications with minimal re-engineering,
it needs to adapt the applications using interfaces or encap-
sulations. Below are some of the researches and tools in the
community that can provide PUMA ways to fulfill those re-
quirements.

7.1 Distributed System Frameworks
A core part of a distributed system is the distributed system
manager. Software, such as Envoy and Amazon Elastic Load
Balancer, manage system resources over the network and dis-
tribute workload accordingly. It also serves as the interface

between the application and the network, where common I/O
such as database access are provided by the manager.

AWS Elastic Load Balancing is a scalable distributed sys-
tem framework for the AWS cloud service. It manages in-
coming traffic either at request level or network level, then
routes traffic to targeted network clients that are running
identical or different micro-services [Amazon Web Services,
2018]. Amazon Web Services ELB balances incoming traf-
fic within the network so that no one system is overloaded.
This load balancer can provide a framework for managing
our distributed systems. However, our project is not focusing
on distributing incoming task within a network, but instead
distributing internal processes across clients for optimal com-
puting.

Envoy is an enterprise-sized distributed system framework
that runs and manages services across a distributed system
[Klein, 2016]. It enables network distribution transparency
by providing a communication mesh for applications over
the network. While it is feature-rich and comprehensive, our
project is not focusing on managing or load balancing be-
tween services, but how we can distribute workload on an
application level using a load supervisor. However, its design
for abstracting the network can be used to provide network
distribution at the application level.

Chubby is a course-grained lock service designed to scale
applications across networked machine clusters [Burrows,
2006]. For example, the Google File System uses Chubby to
appoint master servers and as the root of their distributed data
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Figure 8: Total Latency Penalty from WAN overhead Both graphs show the difference in total latency between trials with
the client running on the EC2 instances and running on the local MacBook Pro in logarithmic scale. Figure 7a shows the results
for trials with varying data sizes and Figure 8b shows the results for trials with varying factorial input integers. Green lines
show the difference in latency without PUMA, i.e., the difference in latency due to the computing power of the two clients. The
orange lines show the difference in latency for the PUMA system, i.e., the latency due to the overhead of sending requests over
the wide area network.

structures [Burrows, 2006]. By using a lock-based paradigm,
Chubby abstracts management of distributed consensus and
allow applications to be implemented and scaled with rel-
atively low effort. However, Chubby focuses on reliability
and deprioritizes performance, which dialog system micro-
services require to achieve low interaction latency.

Zookeeper is a distributed database management software
designed by Yahoo for Hadoop and eventually integrated with
Apache [Hunt et al., 2010]. Similar to Chubby in principle,
Zookeeper provides intuitive interface using locks, registers
and group messaging to the underlying distributed file sys-
tem. It is a useful and powerful tool at the data-level, which
our framework can utilize for managing data concurrency
over the network. Apache and Hadoop, which zookeeper is
currently part of, can be used as a foundation for managing
data distribution in our framework.

7.2 Distributed Data Computation
Distributing partial data for machine learning across a dis-
tributed domain has been proposed for image processing tasks
[Alonso-Calvo et al., 2010]. Images are divided into differ-
ent sub-images that can be stored and processed separately,
which the system manger can distribute the processing of
each sub-image over the network. One of PUMA’s respon-
sibility is to allow applications that work on large continuous
datasets to be distributed across the network. It must be able
to manage the division of the data and distribute the task over
the network. PUMA is also responsible for aggregating the
results of the completed distributed task once all sub-images
are processed. Unlike Google’s TensorFlow [Abadi et al.,

2016], PUMA optimizes both request and computational re-
sources for current usage needs and is not exclusive to rigid
and specific training optimization that are leveraged exclu-
sively on Google clusters.

7.3 Existing Software Adaptation
A major focus in distributed systems is the adaptation of
legacy software into the distributed network. Most legacy
software is written with outdated technology and is not
portable to modern network-centric architectures. One
method of deploying legacy software components into mod-
ern distributed systems is through encapsulation [Sneed,
2000]. A wrapper is used to encapsulate the legacy software
and provide a bridge between modern architecture and the
software components. Wrapping technology provides mod-
ern applications access to the legacy components, such as
wrapping legacy databases to provide object-oriented seman-
tics to modern software. This concept of wrapping can be
adapted to our framework, either by providing bidirectional
interfaces using the wrapper, or using the wrapper on the dis-
tributed network to that the application can see the network
as a standalone, non-distributed hardware.

8 Conclusion
We have described PUMA and its ability to provide dis-
tributed computing environments for traditional monolithic
applications. PUMA provides applications with serverless
advantages such as scaling, load balancing, deniability of
infrastructure provisioning and management all without the



disadvantages of vendor lock-in, lack of security, and cold
start. We have shown that porting applications with PUMA
is flexible enough for most use cases and potentially suitable
for wide adoption. Moreover, we demonstrated that PUMA
outperforms traditional computational heavy tasks by lever-
aging the Envoy mesh. With applications becoming more
complex and dependent on simultaneous high performing ser-
vices, it becomes increasingly important to delegate resources
efficiently and optimally. PUMA accomplishes this task and
provides significant ease of adoption.
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Appendix A: Migrating Application To Distributed Mesh With PUMA

Listing 1: Before PUMA Migration Monolithic threading application used traditional sockets. Most migration logic occurred
here within listenToClient.

1 import s o c k e t
2 import t h r e a d i n g
3 import d i a l o g u e C t r l a s d C t r l
4 from d i a l o g u e C t r l import d i a l o g u e C t r l , i n i t R e s o u r c e s , d i a l o g u e I d l e
5 import j s o n
6 import s y s
7 import t ime
8 import t r a c e b a c k
9

10 debug = F a l s e
11 p a s s i v e = {}
12
13
14 def c h a t b o x s o c k e t ( ) :
15 i f debug :
16 re turn 13120
17 e l s e :
18 re turn 13113
19
20
21 c l a s s T h r e a d i n g S e r v e r ( o b j e c t ) :
22 def i n i t ( s e l f , hos t , p o r t ) :
23 s e l f . h o s t = h o s t
24 s e l f . p o r t = p o r t
25 s e l f . sock = s o c k e t . s o c k e t ( s o c k e t . AF INET , s o c k e t . SOCK STREAM)
26 s e l f . sock . s e t s o c k o p t ( s o c k e t . SOL SOCKET , s o c k e t . SO REUSEADDR, 1)
27 s e l f . sock . b ind ( ( s e l f . hos t , s e l f . p o r t ) )
28
29 def l i s t e n ( s e l f ) :
30 s e l f . sock . l i s t e n ( 5 )
31 s e l f . sock . s e t t i m e o u t ( None )
32 whi le True :
33 c l i e n t , a d d r e s s = s e l f . sock . a c c e p t ( )
34 c l i e n t . s e t t i m e o u t ( 6 0 )
35 t h r e a d i n g . Thread ( t a r g e t = s e l f . l i s t e n T o C l i e n t , a r g s =( c l i e n t , a d d r e s s ) ) . s t a r t ( )
36
37 def l i s t e n T o C l i e n t ( s e l f , c l i e n t , a d d r e s s ) :
38 s i z e = 2048
39 whi le True :
40 t r y :
41 d a t a = c l i e n t . r e c v ( s i z e )
42 i f d a t a :
43 t r y :
44 p r i n t ” d a t a : {}” . format ( d a t a )
45 r e s p o n s e , u s e r i d , pa s s iveL en , s i g n a l = d i a l o g u e C t r l ( d a t a )
46 i f r e s p o n s e == d C t r l . e n d d i a l o g u e :
47 s i g n a l = ’ end ’
48 r e s p o n s e J s o n = j s o n . dumps (
49 { ’ r e s p o n s e ’ : r e s p o n s e , ’ u s e r i d ’ : u s e r i d , ’ s i g n a l ’ : s i g n a l , ’ p a s s i v e L e n ’ : p a s s i v e L e n })
50 p r i n t r e s p o n s e J s o n
51 c l i e n t . send ( r e s p o n s e J s o n )
52 i f s i g n a l != ” l i s t e n ” :
53 d i a l o g u e I d l e ( u s e r i d , debug )
54 e xc ep t E x c e p t i o n as e :
55 e x c t y p e , e x c v a l u e , e x c t r a c e b a c k = s y s . e x c i n f o ( )
56 t r a c e b a c k . p r i n t t b ( e x c t r a c e b a c k , l i m i t =1 , )
57 t r a c e b a c k . p r i n t e x c ( )
58 e l s e :
59 r a i s e e r r o r ( ’ C l i e n t d i s c o n n e c t e d ’ )
60 e xc ep t :
61 c l i e n t . c l o s e ( )
62 re turn F a l s e
63 c l i e n t . c l o s e ( )
64
65 i f n a m e == ” m a i n ” :
66 i n i t R e s o u r c e s ( )
67 i f ’ debug ’ in s y s . a rgv :
68 debug = True
69 p r i n t ” Running i n debug mode . ( s o c k e t : {}) ” . format ( c h a t b o x s o c k e t ( ) )
70 whi le True :
71 T h r e a d i n g S e r v e r ( ’ l o c a l h o s t ’ , c h a t b o x s o c k e t ( ) ) . l i s t e n ( )



Listing 2: After PUMA Migration Only code retain was application logic which was encoded and sent to PUMA Core for
deployment to service endpoints

1 from d i a l o g u e C t r l import d i a l o g u e C t r l , i n i t R e s o u r c e s , d i a l o g u e I d l e
2 import j s o n
3 import p u m a l i b
4 import i n s p e c t
5
6 def s e r v i c e 1 ( ) :
7 t e x t = r e q u e s t . form [ ’ c h a t T e x t ’ ]
8 mode = r e q u e s t . form [ ’mode ’ ]
9 i d = s t r ( r e q u e s t . form [ ’UUID ’ ] )

10 i f i d == ’−1’ :
11 i d = s t r ( uu id . uu id4 ( ) )
12 # app s p e c i f i c py thon c o n t a i n e r
13 r e s p o n s e , u s e r i d , pa s s iveL en , s i g n a l = d c t r l . d i a l o g u e C t r l ( j s o n . dumps ({ ’ t e x t ’ : t e x t , ’mode ’ : mode , ’ i d ’ : i d } ) )
14 i f s i g n a l != ” l i s t e n ” :
15 d c t r l . d i a l o g u e I d l e ( u s e r i d , debug=True )
16 re turn j s o n . dumps ({ ’ r e s p o n s e ’ : r e s p o n s e , ’ u s e r i d ’ : u s e r i d , ’ s i g n a l ’ : s i g n a l , ’ p a s s i v e L e n ’ : p a s s i v e L e n })
17
18 con f = {}
19 con f [ ’ p u m a s e r v i c e s ’ ] = {
20 ” s e r v i c e 1 ” : ” / a g e n t ” ,
21 ” s e r v i c e 2 ” : ” / l i s t e n e r ” ,
22 }
23 puma conf ig ( j s o n . dumps ( con f ) )
24
25 s e r v i c e = {
26 ” s e r v i c e 1 ” : i n s p e c t . g e t s o u r c e l i n e s ( s e r v i c e 1 ( ) )
27 }
28
29 p u m a s e r v i c e ( j s o n . dumps ( s e r v i c e ) )
30
31 i f n a m e == ” m a i n ” :
32 i n i t R e s o u r c e s ( )
33 p u m a s t a r t ( )
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